Нейрокомпьютинг и его применения в экономике и бизнесе

         

Краткая история нейрокомпьютинга


В прошлой лекции появление нейрокомпьютеров представлено как закономерный этап развития вычислительной техники. В результате, у читателя может сложиться впечатление, что и сама идея нейрокомпьютинга - недавнее изобретение. Это, однако, не так. Пути Эволюции редко бывают прямыми. Идеи нейрокомпьютинга появились практически одновременно с зарождением последовательных ЭВМ.

Ключевая работа Мак Каллока и Питтса по нейро-вычислениям (McCulloch and Pitts, 1943) появилась в 1943 году, на два года раньше знаменитой докладной записки фон Неймана о принципах организации вычислений в последовательных универсальных ЭВМ.

Однако, должны были пройти многие десятилетия, прежде чем радикальное удешевление аппаратуры позволило им заявить о себе в полный голос. Дело в том, что последовательная архитектура обладает весьма ценным преимуществом перед параллельной, решающим на ранних стадиях развития вычислительной техники. А именно, она позволяет получать полезные результаты уже при минимальном количестве аппаратуры. В следующей лекции мы покажем, что обучение нейросетей требует больших вычислительных затрат (сложность обучения растет как третья степень размерности задачи). Поэтому нейрокомпьютинг предъявляет достаточно жесткие требования к вычислительной мощности аппаратуры. Только совсем недавно, когда рядовому пользователю PC1)

стала доступна производительность супер-ЭВМ 70-х, нейросетевые методы решения прикладных задач стали приобретать популярность. Как мы увидим далее в этой лекции, даже сейчас "настоящие" параллельные нейрокомпьютеры еще слишком дороги и не получили пока широкого распространения. Что уж говорить о конце 50-х, начале 60-х, когда появились первые образцы нейрокомпьютеров.

Первый экспериментальный нейрокомпьютер Snark был построен Марвином Минским в 1951 году. Однако, он не был приспособлен к решению практически интересных задач, и первый успех нейрокомпьютинга связывают с разработкой другого американца - Френка Розенблатта - персептроном (от английского perception - восприятие) (Rosenblatt, 1961).
Персептрон был впервые смоделирован на универсальной ЭВМ IBM-704 в 1958 году, причем его обучение требовало около получаса машинного времени. Аппаратный вариант - Mark I Perceptron, был построен в 1960 году и предназначался для распознавания зрительных образов. Его рецепторное поле состояло из 400 пикселей (матрица фотоприемников 20x20), и он успешно справлялся с решением ряда задач - мог различать некоторые буквы. Однако по причинам, которые станут понятны по мере знакомства с теорией нейросетей, возможности первых персептронов были весьма ограничены. Позднее, в 1969 году Минский в соавторстве с Пейпертом дает математическое обоснование принципиальной, как им казалось, ограниченности персептронов (Minsky and Papert, 1969), что послужило началом охлаждения научных кругов к нейрокомпьютингу. Исследования в этом направлении были свернуты вплоть до 1983 года, когда они, наконец, получили финансирование от Агентства Перспективных Военных Исследований США, DARPA. Этот факт стал сигналом к началу нового нейросетевого бума.

Интерес широкой научной общественности к нейросетям пробудился в начале 80-х годов после теоретических работ физика Джона Хопфилда (Hopfield, 1982, 1984). Он и его многочисленные последователи обогатили теорию параллельных вычислений многими идеями из арсенала физики, такими как коллективные взаимодействия нейронов, энергия сети, температура обучения и т.д.

Однако, настоящий бум практических применений нейросетей начался после публикации Румельхартом с соавторами метода обучения многослойного персептрона, названного ими методом обратного распространения ошибки (error backpropagation) (Rumelhart et. al., 1986). Ограничения персептронов, о которых писали Минский и Пейперт, оказались преодолимыми, а возможности вычислительной техники - достаточными для решения широкого круга прикладных задач.

Далее в этой лекции мы вкратце опишем современное (правда чрезвычайно быстро меняющееся) состояние нейрокомпьютинга: нейросетевые продукты (как специализированное hardware, так и более доступное software), их сегодняшние применения, а также основные принципы нейровычислений.


Содержание раздела