Предикторы вводят связи между признаками, обеспечивающие их статистическую независимость. В частном случае линейных предикторов дополнительные сети вырождаются в латеральные связи между нейронами последнего слоя. Эти связи обучаются таким образом, чтобы выходы нейронов этого слоя были некоррелированы.
Между тем, можно предложить и такую схему латеральных связей, которая, наоборот, обеспечивает максимальную коррелированность выходов. Допустим, например, что выход каждого нейрона подается на его вход с положительным весом, а на вход остальных нейронов слоя - с отрицательным. Тем самым, каждый нейрон будет усиливать свой выход и подавлять активность остальных. При логистической функции активации, препятствующей бесконечному росту, победителем в этой борьбе выйдет нейрон с максимальным первоначальным значением выхода. Его значение возрастет до единицы, а активность остальных нейронов затухнет до нуля.
Такие соревновательные слои нейронов также можно использовать для сжатия информации, но это сжатие будет основано на совершенно других принципах.