"Ложная память" имеет интересный нетривиальный смысл и в случае использования других правил обучения, минимизирующих энергию нейронных сетей.
Одно из них было предложено в 1985 году Кинцелем, который основывал свои рассуждения на реальном наблюдении, согласно которому у ребенка в первые несколько лет жизни отмирает большое число синапсов, хотя именно в это время он учится и усваивает огромное количество информации (Kinzel, 1985). Подобное явление подсказало Кинцелю следующий метод обучения. Возьмем полностью неорганизованную сеть нейронов
Требование нефрустрированности каждой связи для всех запоминаемых векторов, конечно, очень сильное. Для слабо коррелированных образов приходится уничтожать так много межнейронных соединений, что в полученной слабосвязанной сети почти все состояния оказываются стабильными, т.е. появляется большое число "ложных" образов. (Если нейроны вообще не связаны -
метода уничтожения фрустрированных связей, который стартует с сети, у которой величины всех синаптических связей положительны и равны между собой, и не уничтожает, а инвертирует знак связи, фрустрированной во всех запоминаемых состояний. В примере, иллюстрируемом приводимым ниже рисунком,
в сети из 168 нейронов, организованных в двумерную структуру, запоминаются три образа: (ТФ__) (ТФА_) и (__АК). "Ложными" образами для сети с минимальной памятью будут при этом: пустое поле (____); (__А_); (___К) и их негативы. Невозможно раздельное появление в образе памяти (Т___) и (_Ф__), так как им соответствует один вектор минимального базиса. Невозможно также появление стационарного состояния (ТФ_К), так как в заучиваемых образах присутствие (ТФ__) исключает присутствие (___К) и наоборот.