Состояния ложной памяти могут иметь и другие, не менее интересные формы. Рассмотрим, например, вариант модели Хопфилда, в котором состояния нейронов принимают значения 0 или 1. Подобная модель легко переформулируется в оригинальную, для которой состояниями являются спиновые переменные
, путем переопределения порогов. Мы, однако, будем считать, что в нашей сети пороги всех нейронов отрицательны и бесконечно малы. Иначе говоря, динамика состояния нейрона определяется соотношениямиРассмотрим следующий набор векторов:
, который используем для построения Хеббовской матрицы связейсети Хопфилда. Если найти все аттракторы этой сети (что нетрудно сделать в виду небольшой размерности пространства его состояний 27=128 ), то обнаружится, что помимо векторов ,
, , стационарными являются состояния, описываемые векторамиВекторы
сами по себе замечательны. Их единичные компоненты помечают кооперированные нейроны, то есть те из них, которые одновременно активны или одновременно пассивны во всех запоминаемых векторах . Если считать, что компоненты векторов кодируют некоторые признаки, то кооперированность некоторых нейронов означает, что некоторые признаки избыточны и могут быть заменены одним. Например, если в нашем примере первый нейрон кодирует такое свойство, как пол, а шестой - наличие бороды, то практически со стопроцентной вероятностью они могут быть заменены одним нейроном, о чем сигнализирует вектор .Векторы
, кроме того, образуют так называемый минимальный базис. А именно, это минимальное число векторов, с помощью линейной комбинации которых могут быть представлены все запоминаемые векторыКроме того, все стационарные состояния сети, в Хеббовские связи которых записаны векторы
, также обязательно должны разлагаться по векторам минимального базиса. Это означает, что если некоторые нейроны кооперированы в векторах , то они должны кооперироваться и во всех аттракторах сети.Используя векторы минимального базиса можно получить новый вид недиагональных элементов Хеббовской матрицы связей