Нейрокомпьютинг и его применения в экономике и бизнесе

         

Версии протитипа


Итак, структура аттракторов в модели Хопфилда может допускать различные содержательные интерпретации. В том случае, когда она совпадает со структурой запоминаемых образов мы говорим об ассоциативной памяти (пассивной). Если, напротив, в сети формируется единственный аттрактор, в каком-то смысле являющийся прототипом этих образов, то проявляется способность сети к обобщению (generalization). В общем же случае структура аттракторов сети настолько сложна, что на первый взгляд не допускает какой-либо наглядной трактовки. Действительно, такая трактовка должна быть настолько универсальной, чтобы включать режимы запоминания и обобщения в качестве предельных случаев. Тем не менее она возможна и опирается на рассуждения, которые приводятся в данном разделе.

Начнем с рассмотрения сети Хопфилда, в память которой, согласно правилу Хебба, записан только один образ

. В этом случае синаптические связи определяются выражением

У такой сети есть только два зеркально симметричных стационарных состояния

. Если она перейдет в одно из них, то величина энергии в минимуме составит

Заметим, что все связи в сети дают в энергию одинаковый отрицательный вклад и поэтому являются не фрустрированными. Напомним, что условием фрустрации связи в состоянии сети является неравенство

.

Именно это условие не выполняется ни для одной связи в сети с записанным единственным образом. Мы можем трактовать подобную ситуацию так, что сеть с одним записанным в нее образом точно воспроизводит его в виде своего аттрактора (с точностью до зеркального отражения), и если мы выберем в этой сети случайную связь, то вероятность ее фрустрации будет равна нулю.

Таким образом, сеть Хопфилда идеально приспособлена для хранения единственного образа.

Рассмотрим теперь следующую систему (см. рисунок 5.6). Пусть в Хопфилдовской сети-передатчике (слева) записан единственный образ

, который нам неизвестен. Этот образ многократно передается в Хопфилдовскую сеть-приемник (справа) в виде сообщения через канал с шумом. При его прохождении образ
искажается так, что некоторые компоненты кодирующего его вектора меняют свой знак на противоположный.




Внизу: сети с записанным единственным сообщением прототипом (слева) и со всеми искаженными версиями этого сообщения (справа)" width="313" height="243">

Рис. 5.6.  Вверху: интерпретация стационарных состояний в сети Хопфилда как локально наиболее правдоподобных версий сообщения, многократно переданного сетью-передатчиком в сеть-приемник через канал с шумом. Внизу: сети с записанным единственным сообщением прототипом (слева) и со всеми искаженными версиями этого сообщения (справа)


Задача сети-премника состоит в том, чтобы имея P полученных сообщений
восстановить исходное сообщение
. Исходя из полученных сообщений, оценим вероятность того, что в исходном сообщении компоненты
и
имеют одинаковое или противоположные значения. Для этого нужно просто подсчитать, в скольких из P сообщений произведения
положительны или отрицательны и отнести это число к полному числу сообщений. Формально эти вероятности можно записать как


Вспоминая выражение для правила Хебба, убеждаемся что если сообщения
, полученные сетью-приемником, сформируют свои связи в соответствие с ним, то тогда


Используя последнее соотношение, преобразуем выражение для энергии состояния в сети-приемнике к виду


Поскольку мы не знаем точного вида сообщения
, записанного в связях сети-передатчика, то мы не знаем и величин этих связей. Однако, мы можем задаться следующим вопросом: если состояние сети-передатчика совпадает с состоянием сети-приемника
, то какова вероятность, что случайно выбранная связь в сети-передатчике окажется фрустрированной. Легко увидеть, что эта вероятность равна


Таким образом, энергия состояния сети-приемника с точностью до постоянных множителя и слагаемого совпадает с вероятностью фрустрации случайно выбранной связи в сети-передатчике, оцененной по полученным от нее сообщениям.

Однако в сети-передатчике записано лишь одно сообщение, и вероятность фрустрации связей в ней равна нулю. Но поскольку ни сообщение, ни соответствующие ему связи сети-передатчика нам не известны, мы можем лишь пытаться найти такое состояние сети-приемника, которое хотя бы локально минимизирует эту вероятность. Подобные состояния были бы локально наилучшими версиями сообщения, посылаемого сетью-передатчиком.


А так как вероятность нахождения фрустрированной связи в передатчике связана с энергией состояния в приемнике, то такими наилучшими версиями как раз и окажутся состояния, соответствующие энергетическим минимумам сети-приемника. Таким образом все аттракторы сети Хопфилда, связи которой сформированы согласно правилу Хебба, исходя из набора обучающих векторов
, могут трактоваться как наиболее вероятные версии некоторого сообщения, переданного P раз через канал с шумом и представленных заучиваемыми векторами.

Подобный подход устраняет деление состояний памяти на истинные и ложные, давая им единую интерпретацию. В такой трактовке функционирование сети Хопфилда в качестве пассивной памяти соответствует случаю, когда шум в канале очень велик, т.е. все принимаемые сетью сообщения некоррелированы. Это не дает ей возможности выделить из них сообщения и, рассматривая их как равноправные его версии, сеть генерирует аттрактор в каждой точке N-мерного пространства
. Если же, напротив, шум в канале невелик, т.е. все запоминаемые векторы мало отличаются от передаваемого сообщения, в сети вырабатывается его единственная версия.

Хотя первоначально сеть Хопфилда привлекалась для объяснения свойств ассоциативной памяти, можно привести множество различных примеров ее применения и для выделения зашумленного сигнала-прототипа. В качестве одного из таких примеров мы рассмотрим один - поиск промоторов в ДНК


Содержание раздела