Нейрокомпьютинг и его применения в экономике и бизнесе


Генетические алгоритмы - часть 2


Чем меньше это значение для данной хромосомы, тем с большей вероятностью она отбираются для кроссинговера. В ходе эволюции усредненное по популяции значение функционала будет уменьшаться, и после завершения процесса (проведения заданного числа генераций) хромосома с минимальным его значаением выбирается в качестве приближенного решения поставленной задачи. Можно значительно улучшить свойства генетического алгоритма если после порождения новой генерации
N
хромосом предварительно объединить ее с предыдущей популяцией и выбрать из
2N
полученных хромосом
N
наилучших. Опыт показывает, что генетические алгоритмы особенно эффективны при поиске глобального оптимума, поскольку они осуществляют поиск в широком пространстве решений. Если закодировать в виде хромосом значения весов и порогов нейронной сети заданной архитектуры и использовать в роли минимизируемой функции функционал ошибки, то генетические алгоритмы можно использовать для обучения этой нейронной сети. Очевидно, что для этой же цели можно использовать и описанный ранее метод иммитации отжига.




Начало  Назад  Вперед



Книжный магазин