Иной подход к решению задачи коммивояжера использовали в 1987 году Дурбин и Уиллшоу (Durbin & Willshaw, 1987). Хотя они явно и не использовали в своей работе понятия искусственной нейронной сети, но в качестве отправной точки упоминали об аналогии с механизмами установления упорядоченных нейронных связей. Исследователи предложили рассматривать каждый из маршрутов коммивояжера как отображение окружности на плоскость, так что в каждый город на плоскости отображается некоторая точка этой окружности. При этом требуется, чтобы соседние точки на окружности отображались в точки, по возможности ближайшие и на плоскости. Алгоритм стартует с помещения на плоскость небольшой окружности (кольца), которая неравномерно расширяясь проходит практически около всех городов и, в конечном итоге, определяет искомый маршрут. Каждая точка расширяющегося кольца движется под действием двух сил: первая перемещает ее в сторону ближайшего города, а вторая смещает в сторону ее соседей на кольце так, чтобы уменьшить его длину. По мере расширения такой эластичной сети, каждый город оказывается ассоциирован с определенным участком кольца.
Вначале все города оказывают приблизительно одинаковое влияние на каждую точку маршрута. В последующем, большие расстояния становятся менее влиятельными и каждый город становится более специфичным для ближайших к нему точек кольца. Такое постепенное увеличение специфичности, которое, конечно, напоминает уже знакомый нам метод обучения сети Кохонена, контролируется значением некоторого эффективного радиуса
. Если обозначить через вектор, определяющий положение -го города на плоскости, а -координату -й точки на кольце, то закон изменения последний имеет видгде параметры
определяют относительное воздействие на точку описанных выше двух сил. Коэффициенты , определяющие воздействие -го города на -ю точку кольца, являются функцией расстояния и параметра . Эти коэффициенты нормированы так, что полное воздействие каждого из городов оказывается одинаковым:где
- положительная, ограниченная и убывающая функция d, приближающаяся к нулю при Если в качестве этой функции выбрать распределение Гаусса , то можно определить функцию Ляпуновакоторая минимизируется в ходе динамического изменения параметров кольца.
Дурбин и Уиллшоу показали, что для задачи с 30 городами, рассмотренной Хопфилдом и Танком, метод эластичной сети генерирует наикратчайший маршрут примерно за 1000 итераций. Для 100 городов найденный этим методом маршрут лишь на 1% превосходил оптимальный.