Нейрокомпьютинг и его применения в экономике и бизнесе

         

Квантование входов


Более распространенный вид нейросетевой предобработки данных - квантование входов, использующее слой соревновательных нейронов (см. рисунок 7.9).


Рис. 7.9.  Понижение разнообразия входов методом квантования (кластеризации)

Нейрон-победитель является прототипом ближайших к нему входных векторов. Квантование входов обычно не сокращает, а наоборот, существенно увеличивает число входных переменных. Поэтому его используют в сочетании с простейшим линейным дискриминатором - однослойным персептороном. Получающаяся в итоге гибридная нейросеть, предложенная Нехт-Нильсеном в 1987 году, обучается послойно: сначала соревновательный слой кластеризует входы, затем выходным весам присваиваются значения выходной функции, соответствующие данному кластеру. Такие сети позволяют относительно быстро получать грубое - кусочно-постоянное - приближение аппроксимируемой функции (см. рисунок 7.10).


Рис. 7.10.  Гибридная сеть с соревновательным слоем, дающая кусочно-постоянное приближение функций

Особенно полезны кластеризующие сети для восстановления пропусков в массиве обучающих данных. Поскольку работа соревновательного слоя основана на сравнении расстояний между данными и прототипами, осутствие у входного вектора

некоторых компонент не препятствует нахождению прототипа-победителя: сравнение ведется по оставшимся компонентам
:

При этом все прототипы

находятся в одинаковом положении. Рисунок 7.11 иллюстрирует эту ситуацию.


Рис. 7.11.  Наличие пропущенных компонент не препятствует нахождению ближайшего прототипа по оставшимся компонентам входного вектора

Таким образом, слой квантующих входные данные нейронов нечувствителен к пропущенным компонентам, и может служить "защитным экраном" для минимизации последствий от наличия пропусков в обучающей базе данных.



Содержание раздела