Легче всего оценить значимость входов в линейной модели, предполагающей линейную зависимость выходов от входов:
Матрицу весов
(Полагая, что данные нормированны на их дисперсию.) Таким образом, значимость
Особенно просто определить значимость выбеленных входов. Для достаточно просто вычислить взаимную корреляцию входов и выходов:
Действительно, при линейной зависимости между входами и выходами имеем:
Таким образом, в общем случае для получения матрицы весов требуется решить систему линейных уравнений. Но для предварительно выбеленных входов имеем:
Резюмируя, значимость входов в предположении о приблизительно линейной зависимости между входными и выходными переменными для выбеленных входов пропорциональна норме столбцов матрицы кросс-корреляций:
Не следует, однако, обольщаться существованием столь простого рецепта определения значимости входов. Линейная модель может быть легко построена и без привлечения нейросетей. Реальная сила нейроанализа как раз и состоит в возможности находить более сложные нелинейные зависимости. Более того, для облегчения собственно нелинейного анализа рекомендуется заранее освободиться от тривиальных линейных зависимостей - т.е. в качестве выходов при обучении подавать разность между выходными значениями и их линейным приближением. Это увеличит "разрешающую способность" нейросетевого моделирования (см. рисунок 7.12).
Для определения "нелинейной" значимости входов - после вычитания линейной составляющей, изложенный выше подход неприменим. Здесь надо привлекать более изощренные методики. К описанию одной из них, алгоритмам box-counting, мы и переходим.