Подобного рода сжатие информации является примером извлечения из непомерно большого числа входных переменных наиболее значимых для предсказания признаков. Способы систематического извлечения признаков уже были описаны в прошлых лекциях. Их можно (и нужно) с успехом применять и к предсказанию временных рядов.
Важно только, чтобы способ представления входной информации по возможности облегчал процесс извлечения признаков. Вейвлетное представление являет собой пример удачного, с точки зрения извлечения признаков, кодирования (Kaiser, 1995). Например, на следующем рисунке ( рисунок 8.6) изображен отрезок из 50 значений ряда вместе с его реконструкцией по 10 специальным образом отобранным вейвлет-коэффициентов. Обратите внимание, что несмотря на то, что для этого потребовалось в пять раз меньше даных, непосредственное прошлое ряда восстановлено точно, а более далекое - лишь в общих чертах, хотя максимумы и минимумы отражены верно. Следовательно, можно с приемлемой точностью описывать 50-мерное окно всего лишь 10-мерным входным вектором.
Еще один возможный подход - использование в качестве возможных кандидатов в пространство признаков различного рода индикаторов технического анализа, которые автоматически подсчитываются в соответствующих программных пакетах (таких как MetaStock или Windows On Wall Street). Многочисленность этих эмпирических признаков (Colby, 1988) затрудняет пользование ими, тогда как каждый из них может оказаться полезным в применении к данному ряду. Описанные ранее методы позволят отобрать наиболее значимую комбинацию технических индикаторов, которую и следует затем использовать в качестве входов нейросети.