Нейрокомпьютинг и его применения в экономике и бизнесе


Извлечение знаний


В последние годы созданы огромные базы данных, в которых хранится информация научного, экономического, делового и политического характера. В качестве примера можно привести GenBank, содержащий террабайты данных о последовательностях ДНК живых организмов. Для работы с подобными базами разработаны компьютерные технологии, позволяющие хранить, сортировать и визуализировать данные, осуществлять быстрый доступ к ним, осуществлять их статистическую обработку. Значительно меньшими являются, однако, достижения в разработке методов и программ, способных обнаружить в данных важную, но скрытую информацию. Можно сказать, что информация находится к данным в таком же отношении, как чистое золото к бедной золотоносной руде. Извлечение этой информации может дать критический толчок в бизнесе, в научных исследованиях и других областях. Подобное нетривиальное извлечение неявной, прежде неизвестной и потенциально полезной информации из больших баз данных и называется Разработкой Данных (Data Mining) или же Открытием Знаний (Knowledge Discovery). Мы будем использовать далее для описания этой области информатики более явный синтетический термин - извлечение знаний. Извлечение знаний использует концепции, разработанные в таких областях как машинное обучение (Machine Learning), технология баз данных (Database Technology), статистика и других.

Главными требованиями, предъявляемыми к методам извлечения знаний, являются эффективность и масштабируемость. Работа с очень большими базами данных требует эффективности алгоритмов, а неточность и, зачастую, неполнота данных порождают дополнительные проблемы для извлечения знаний. Нейронные сети имеют здесь неоспоримое преимущество, поскольку именно они являются наиболее эффективным средством работы с зашумленными данными. Действительно, заполнение пропусков в базах данных - одна из прототипических задач, решаемых нейросетями. Однако, главной претензией к нейронным сетям всегда было отсутствие объяснения. Демонстрация того, что нейронные сети действительно можно использовать для получения наглядно сформулированных правил было важным событием конца 80-х годов.


Начало  Назад  Вперед



Книжный магазин