Нейрокомпьютинг и его применения в экономике и бизнесе


Извлечение знаний - часть 2


В 1989 году один из авторов настоящего курса поинтересовался у Роберта Хехт-Нильсена, главы одной из наиболее известных американских нейрокомпьютерных фирм Hecht-Nielsen Neurocomputers, где можно узнать подробности о нейроэкспертных си стемах, информация о которых тогда носила только рекламный характер. Хехт-Нильсен ответил в том смысле, что она не доступна. Но уже через 2-3 месяца после этого в журнале Artificial Intelligence Expert была опубликована информация о том, что после долгих и трудных переговоров Хехт-Нильсен и крупнейший авторитет в области экспертных систем Гэллант запатентовали метод извлечения правил из обученных нейронных сетей и метод автоматической нейросетевой генерации экспертных систем.

Извлечение правил из нейронных сетей подразумевает их предварительное обучение. Поскольку эта процедура требует много времени для больших баз данных, то естественна та критика, которой подвергается использование нейротехнологии для извлечения знаний. Другим поводом для такой критики является трудность инкорпорации в нейронные сети некоторых имеющихся априорных знаний. Тем не менее, главным является артикуляция правил на основе анализа структуры нейронной сети. Если эта задача решается, то низкая ошибка классификации и робастность нейронных сетей дают им преимущества перед другими методами извлечения знаний.




Начало  Назад  Вперед



Книжный магазин