Конструктивный взгляд на взаимоотношение нейронных сетей и статистических методов заключается в том, что в общем случае они должны помогать друг другу и обогащать друг друга. Кристоф и Пьер Кувре назвали такой процесс перекрестным опылением.
Например, было показано, что нейросетевые классификаторы оценивают апостериорную Байесовскую вероятность и поэтому аппроксимируют оптимальный статистический классификатор с минимальной ошибкой. Подобная статистическая интерпретация значений выходов нейронной сети позволяет, в частности, компенсировать обычно существующие диспропорции в объемах примеров, представляющих в обучающей выборке различные классы.