Нейрокомпьютинг и его применения в экономике и бизнесе



              

В чем различие нейронных сетей и статистики? - часть 3


В отличие от нейронных сетей, требующих обучения, факторный анализ может работать лишь с определенным числом наблюдений. Хотя в принципе число таких наблюдений должно лишь на единицу превосходить число переменных рекомендуется использовать хотя бы втрое большее число значение. Это все равно считается меньшим, чем объем обучающей выборки для нейронной сети. Поэтому статистики указывают на преимущество факторного анализа, заключающееся в использовании меньшего числа данных и, следовательно, приводящего к более быстрой генерации модели. Кроме того, это означает, что реализация методов факторного анализа требует менее мощных вычислительных средств. Другим преимуществом факторного анализа считается то, что он является методом типа white-box, т.е. полностью открыт и понятен - пользователь может легко осознавать, почему модель дает тот или иной результат. Связь факторного анализа с моделью Хопфилда можно увидеть, вспомнив векторы минимального базиса для набора наблюдений (образов памяти - см. Лекцию 5). Именно эти векторы являются аналогами факторов, объединяющих различные компоненты векторов памяти - первичные признаки.




Содержание  Назад  Вперед