Нейрокомпьютинг и его применения в экономике и бизнесе

         

Из чего построен мозг


Мозг построен из клеток двух типов: глиальных и нейронов. И хотя роль глии в его работе, видимо, довольно значительна, большинство исследователей полагает, что в основном понимание работы мозга может быть достигнуто при изучении нейронов, объединенных в единую связанную сеть. Эта парадигма и используется при построении, изучении и применении искусственных нейронных сетей, которым посвящена эта книга.

Следует, однако, заметить, что имеются и другие точки зрения. В частности, такие ученые как Пенроуз и Хамерофф считают, что главные события происходят не в нейронной сети, а в самих клетках, а именно в их цитоскелетоне, в так называемых микротрубочках. Согласно их точке зрения, и память, и даже сознание определяются конформационными изменениями белков во внутриклеточных структурах и связанными с ними квантовыми эффектами.

Количество нейронов в мозге оценивается величиной 1010-1011. Типичные нейроны имеют тело клетки (сому), множество ветвящихся коротких отростков - дендритов и единственный длинный и тонкий отросток - аксон. На конце аксон также разветвляется и образует контакты с дендритами других нейронов - синапсы рис. 1.1.


Рис. 1.1.  Схема нейрона и межнейронного взаимодействия

Внутриклеточное пространство нейрона имеет отрицательный электрический потенциал по отношению к внеклеточному (-70 mV), то есть клетка в целом поляризована. Поляризация возникает за счет избирательной проницаемости клеточной мембраны для ионов натрия и калия, приводящей к разнице их концентраций внутри и вне клетки. Однако, если внешним образом достаточно сильно изменить потенциал мембраны одного нейрона (передатчика) вблизи выхода аксона из его клеточного тела, то проницаемость мембраны меняется и перераспределение ионов во внутриклеточном и внеклеточном пространстве аксона приводит к распространению по нему волны кратковременной деполяризации. Электрический импульс, распространившись по всем ветвлениям окончания аксона со скоростью около 100 м/с, достигает синапсов, расположенных в местах его контакта с дендритами или сомой других клеток.
Под воздействием этого импульса в синапсах выделяются специальные химические вещества - нейромедиаторы, которые, пересекая синаптическую щель, взаимодействуют с мембраной нейрона-приемника и изменяют ее потенциал. Таким образом воздействие передается от одного нейрона к другим. Заметим, что это воздействие может являться как возбуждающим - способствующим дальнейшей генерации волны деполяризации в нейроне-приемнике, так и ингибирующим - препятствующим такой генерации. Тип воздействия определяется химической природой нейромедиатора, выделяющегося в синапсе.

После генерации импульса нейрон некоторое время (период рефрактерности) не может активироваться. Поэтому частота, с которой нейрон может генерировать импульсы ограничивается примерно 100 Гц.

Каждый из нейронов устанавливает синаптические связи в среднем с 104 другими нейронами. Поэтому число связей в мозге оценивается в 1014 -1015. Очень грубо можно считать, что нейроны мозга могут находиться в двух состояниях - возбужденном (когда они предают свое воздействие другим нейронам) и покоящемся (когда такой передачи нет).

До сих пор неизвестно, каким кодом пользуется нервная система для передачи взаимодействия. Может быть, он является бинарным, и значение имеют указанные состояния нейронов. Возможно, важна частота электрической активности нейронов, кодирующая интенсивность сигнала. Например, у нейронов коры эта частота может быть пропорциональна вероятности некоторого события. Наконец, информация может содержаться не в импульсных процессах, а в более медленных изменениях потенциала мембраны, которые не всегда активируют клетку (т.е. не превышают порога активации). Однако при любом предположении модель сети взаимодействующих нейронов оказывается исключительно богатой и обладающей свойствами, которые можно сопоставить с реальными возможностями мозга.


Содержание раздела