Нейрокомпьютинг и его применения в экономике и бизнесе


Специфика образной информации


Широкополосность образов имеет далеко идущие последствия. Пусть компьютер манипулирует n-разрядными символами. Количество информации, требуемое для описания произвольного преобразования таких символов составляет

 \log_{2}2^{n2^{n}}=n2^{n}

бит. Иными словами, для описания произвольного алгоритма обработки n-разрядных символов потребуется 2n таких символов. Это типичный пример "комбинаторного взрыва".

Таблица 1.1. Длина алгоритма произвольного преобразования n-разрядных символов

Разрядность n машинных словДлина произвольного алгоритма
8256B
16128KB
3216GB
......
102421000B

Отсюда и следует качественное различие обработки символьной (малоразрядной) и образной (многоразрядной) информации. Для символов в принципе возможно описать любой способ их обработки. Для образов это в принципе невозможно. Естественно, существуют относительно тривиальные преобразования образов, поддающиеся формализации, т.е. имеющие компактное описание. На таких операциях построены графические ускорители и программные пакеты обработки изображений. Однако, в общем случае операции с образами неформализуемы. Преобразование образов, следовательно, должно основываться на алгоритмах, описанных лишь частично.

Для таких неформализуемых задач частичным описанием алгоритма является некое подмножеством полной таблицы преобразований - множество примеров, или обучающее множество. Возникает новый класс задач - восстановления алгоритма по набору примеров, обучения на примерах.

Процессоры образов должны обладать способностью обобщения конечного числа примеров на потенциально необозримое множество возможных ситуаций, иными словами, способностью предсказуемого поведения в новых ситуациях. В этом своем качестве они противоположны обычным компьютером, где алгоритм в явном виде задает поведение во всех мыслимых ситуациях.

Итак, возникает новая парадигма вычислительных машин: алгоритмы, порождаемые данными в универсальном процессе обучения, специализированные для данного класса операций с образами, адаптированные под конкретные информационные задачи. Это - естественный путь развития вычислительной техники, который обеспечивает одновременно и универсальность и простоту архитектуры таких универсальных спец-процессоров.




Начало  Назад  Вперед