Метод генерации событий даггера был разработан Кумамото [K.Kumamoto et al “Dagger sampling Monte-Carlo for system unavailability evaluation”, IEEE Transaction Reliability, R-29 (1980)122-125] и может рассматриваться как “m-мерное” расширение антитетического способа. Идея, которая является общей для нескольких методик Монте-Карло, заключается в том, чтобы разбросать отдельные неудачи на краях так, что повторные испытания минимизируются. Процедура описана ниже.
Генерация событий по методу даггера (кинжала)
1. Пусть (Ne: eОE) является вектором целых чисел, выбранных пропорционально (действительным) qe.
2. Генерируем вектор события размером К*, так что для каждого ребра е последовательность К* репликаций может быть разделена на Ne субблоков размера К*/Ne.
3. Для каждого ребра е выбираем случайным образом репликацию в каждом из субблоков Ne, для того края, для которого испытание оказалось неудачным. В результате получается совокупность неудач для репликаций К*, для которых частота неудач на каждом из краев пропорциональна среднему значению частоты неудач данного края.
4. Делаем окончательный проход по репликациям К*, вычисляя усредненную долю репликаций, соответствующих работе системы. Это число является несмещенной оценкой R.