Примеры сетевых топологий

         

Выбор метрики


Мы детально рассмотрели несколько разных метрик (мер) и фактически существует еще много метрик, которые не были упомянуты или которые были рассмотрены достаточно бегло. Может возникнуть дилемма, какую метрику использовать. Следующие соображения являются фундаментальными при принятии такого решения:

1. Важность и природа критерия работоспособности.

2. Сообщество обслуживаемых пользователей.

3. Философия обслуживания: хорошее качество в среднем или хорошее качество в экстремальных режимах.

Фундаментальным решением является, следует ли использовать меру связности или меру работоспособности. Меры связности включают все версии k-терминальных метрик, а также определенные относительные метрики, такие как сетевая адаптивность, ожидаемая доля пар узлов, участвующих в обмене одновременно. Меры работоспособности явно отражают модель вариации рабочих характеристик при сетевых отказах. Мера связности может быть полезной, когда функционирование сети считается удовлетворительным, если обеспечивается ее связность. Это так для многих оптоволоконных сетей. Мера связности полезна также при измерении вероятности того, что сеть способна обеспечить некоторый минимальный уровень обслуживания, т.е. вероятность того, что сеть может обработать важные вызовы или аварийные сигналы. Исследования мер работоспособности мотивировалось тем, что существуют сети, где при отказе какого-то компонента уровень функционирования сети падает ниже приемлемого уровня, хотя сеть и остается связной. В таких случаях использование меры работоспособности является обязательным.

Выбор одного из двух терминалов, k-терминалов или всех терминалов зависит от сообщества заинтересованных пользователей. Двухтерминальная метрика определяет способность сети обеспечить коммуникацию для двух специфицированных терминалов пользователей. Таким образом, метрика может рассматриваться как метрика, специфическая для пользователя. С другой стороны всетерминальная метрика характеризует возможности сервис провайдера. Она описывает работоспособность системы по отношению к возможности предоставить услуги всем возможным терминальным парам.
Следует заметить, что в определенном смысле всетерминальная мера надежности весьма “консервативна”. В частности, всетерминальная метрика меньше чем самая малая мера для двух терминалов и вообще должна быть много меньше.

Другой всесистемной мерой надежности является минимум метрик надежности для всех терминальных пар. Это может интерпретироваться как уровень надежности, гарантируемый всем пользователям. Другой относительной величиной является средняя метрика надежности для всей совокупности пар терминалов, которая характеризует степень устойчивости. Выбор между минимумом и средним относится к общей философии сервис провайдера, в частности, объективным показателем того, что услуга будет удовлетворительной “в среднем” или гарантировано.

Общая k-терминальная метрика имеет отношение к интересам сообщества пользователей, относящихся к некоторой подсети узлов. В зависимости от выбранного поднабора узлов может быть предоставлена информация обо всей сети или специфическая информация.

Наиболее приемлемые меры работоспособности обычно определяются характером используемых приложений. В случае метрик работоспособности существует выбор между измерением уровня усредненных рабочих параметров и параметров в экстремальных ситуациях, например 95-ый процентиль. Это снова относится к философии обслуживания, упомянутой выше.

7.3. Выбор правильного алгоритма

В дополнение к предоставлению читателю разнообразных мер надежности эта глава дает широкий выбор для вычисления каждой из упомянутых мер, включая точные алгоритмы, аналитические границы и моделирование по методу Монте-Карло. Таким образом, здесь может также возникнуть чувство неуверенности. Выбор из числа алгоритмов сильно зависит от размера вовлеченной сетевой структуры. В идеале предпочтителен алгоритм, который выдает точное значение надежности. Однако эффективные (полиномиально ограниченные) алгоритмы доступны только для определенных структурных классов графов, описанных в разделе 3. Для произвольных графов перечисленные алгоритмы могут решить задачи только ограниченного объема.


Для других ситуаций должны использоваться аппроксимационные алгоритмы. Выбор между аналитическими ограничениями и методом Монте-Карло является более тонким. Аналитические ограничения зависят от специфики проблемы. Следовательно, как это описано в разделе 4, такие ограничения существуют только для определенных классов задач. Далее, их качество и сопряженное с ним время работы алгоритма может отличаться в зависимости от класса решаемой задачи. Для определенных классов доступные ограничения весьма хороши и могут быть вычислены достаточно быстро. Однако для других классов это не так. Преимущества Монте-Карло заключаются в том, что некоторые подходы Монте-Карло могут быть реализованы потенциально для всех метрик, представляющих интерес, а сам алгоритм Монте-Карло может работать долгий или короткий период времени с соразмерным увеличением или уменьшением уровня точности. Нам следует заметить, что некоторые более продвинутые методы Монте-Карло используют проблемные структуры и, следовательно, не имеют первого преимущества.

Надо учитывать важный момент, связанный с аналитическими ограничениями, разрешены ли неравные вероятности отказов. Некоторые методы расчета ограничений лимитируют оценки надежности полиномиально и как следствие выдают результат только для случаев, когда вероятности всех отказов равны. С другой стороны нужно отметить, что полином надежности выдает информацию во всем диапазоне значений вероятностей отказов.

Следует рассмотреть еще один момент, относящийся к данной проблеме, какую модель использовать, с ориентированным или неориентированным графом. Как было отмечено в разделе 2, модель ориентированного графа является более общей и пригодна для широкого класса мер, она пригодна для моделирования как ориентированных, так и неориентированных проблем, с отказами узлов и без отказов.


Содержание раздела