Fast Ethernet
Семёнов Ю.А. (ГНЦ ИТЭФ), book.itep.ru
100-мегагерцную сеть Ethernet дешевле создать на базе скрученных пар. Существует несколько версий 100-мегагерцного Ethernet (100base-T4, 100base-TX, 100base-FX, стандарт 100VG-anylan - IEEE 802.12). Формат кадра FE и GE предполагает обязательное использование ESD (EFD) - разграничителей конца кадра (потока). ESD (End Stream Delimeter) не увеличивает длины кадра, так как попадает в область IPG (96 бит-тактов, разделяющих кадры с длиной 1522 байта).
TX и RX передатчики и приемники входных/выходных оптоволоконных трансиверов, соответственно. FOMAU - (Fiber Optic Media Attachment Unit) оптоволоконный трансивер (см. рис. 4.1.1.1.9).
Сегменты T4 (100base-T4) используют четыре скрученные пары телефонного качества (экранированные и неэкранированные скрученные пары проводов категории 3, 4 или 5) длиной до 100м. Провода должны быть скручены по всей длине, скрутка может быть прервана не далее как в 12мм от разъема (это требование справедливо и для сегментов типа TX).
Сегменты TX (100base-TX, стандарт ANSI TP-PMD) состоят из двух скрученных пар проводов информационного качества (волновое сопротивление 100-150 Ом, экранированные и неэкранированные скрученные пары проводов категории 5, длина до 100м).
FX-сегменты (100base-FX) представляют собой оптоволоконные кабели, отвечающие требованиям стандарта ANSI. Мультимодовое волокно 62,5/125 m (см. выше) работает в инфракрасном диапазоне 1350нм. Максимальная длина сегмента составляет 412 метров, ограничение определяется соображениями допустимых задержек. Предельное ослабление сигнала в волокне не должно превышать 11 дБ, стандартный кабель имеет 1-5 дБ/км. Оптические разъемы должны отвечать тем же требованиям, что и разъемы, используемые в FDDI-сетях (MIC- Media Interface Connector).
Для того, чтобы выявить, к какой модификации относится тот или иной сегмент, разработан специальный протокол распознавания, позволяющий строить сети, которые содержат оборудование и кабельные сегменты, отвечающие разным требованиям.
Универсальная схема подключения ЭВМ или любого другого оборудования (например, сетевого принтера) к 100-мегагерцному ethernet показана на рис. 4.1.1.2.1.
Физическая среда служит для передачи сигналов Ethernet от одной ЭВМ к другой. Выше были перечислены три вида физических сред, используемых 100-мегагерцным Ethernet (T4, TX и FX). Здесь используется 8-контактный разъем (RJ-45) для скрученных пар или специальный оптоволоконный соединитель. Блок PHY выполняет ту же функцию, что и трансивер в 10-мегагерцном Ethernet. Он может представлять собой набор интегральных схем в сетевом порту или иметь вид небольшой коробочки на MII-кабеле. Интерфейс MII является опционным, он может поддерживать работу с 10- и 100-мегагерцным ethernet. Задачей MII является преобразование сигналов, поступающих от PHY, в форму, приемлемую для стандартного набора ИС Ethernet. Соединительный кабель не должен быть длиннее 0,5м. PHY и MII могут быть объединены на одной интерфейсной плате, вставляемой в ЭВМ.
Рис. 4.1.1.2.1 Блок-схема подключения оборудования к 100-мегагерцному Ethernet
В сетях 100-мегагерцного Ethernet используются повторители двух классов (
I и
II). Задержки сигналов в повторителях класса
I больше (~140нс), зато они преобразуют входные сигналы в соответствии с регламентациями применяемыми при работе с цифровыми кодами. Такие повторители могут соединять каналы, отвечающие разным требованиям, например, 100base-TX и 100base-T4 или 100base-FX. Преобразование сигнала может занимать время, соответствующее передаче нескольких бит, поэтому в пределах одного логического сегмента может быть применен только один повторитель класса
I, если кабельные сегменты имеют предельную длину. Повторители часто имеют встроенные возможности управления с использованием протокола SNMP.
Повторители класса
II имеют небольшие задержки (~90нс или даже меньше), но никакого преобразования сигналов здесь не производится, и по этой причине они могут объединять только однотипные сегменты. Логический сегмент может содержать не более двух повторителя класса
II, если кабели имеют предельную длину.
Повторители класса
II не могут объединять сегменты разных типов, например, 100base-TX и 100base-T4. Согласно требованиям комитета IEEE время задержки сигнала jam в повторителе Fast Ethernet (TX и FX) не должно превышать 460 нсек, а для 100base-T4 - 670 нсек. Для повторителей класса I эта задержка не должна быть больше 1400 нсек. Значения предельных длин сегментов для различных конфигураций сети приведены в таблице 4.1.1.2.1.
Таблица 4.1.1.2.1. Максимальные размеры логического кабельного сегмента
Тип повторителя |
Скрученные пары [м] |
Оптическое волокно [м] |
Один сегмент ЭВМ-ЭВМ | 100 | 412 |
Один повторитель класса I | 200 | 272 |
Один повторитель класса II | 200 | 320 |
Два повторителя класса II | 205 | 228 |
Типовые задержки для различных устройств Fast Ethernet представлены в табл. 4.1.1.2.2.
Таблица 4.1.1.2.2
Сетевое устройство |
Задержка [нсек] |
Повторитель класса I | 700 |
Повторитель класса II (порты T4 и TX/FX) | 460 |
Повторитель класса II (все порты T4) | 340 |
Сетевая карта T4 | 345 |
Сетевая карта ТХ или FX | 250 |
Вариант построения 100-мегагерцной сети ethernet показан на рис. 4.1.1.2.2.
Рис. 4.1.1.2.2. Возможная схема 100-мегагерцной сети Ethernet.
Из рисунка видно, что максимальная длина логического сегмента не может превышать А+Б+В = 205 метров (см. табл. 4.1.1.2.3.). Предельно допустимые длины кабелей А и В приведены в табл. 4.1.1.2.3.
Таблица 4.1.1.2.3. Максимально допустимые длины кабелей для сети, показанной на рис. 4.1.1.2.2
(Таблица взята из книги Лаема Куина и Ричарда Рассела Fast Ethernet, bhv, Киев, 1998.).
Тип кабеля А (категория) | Тип кабеля В (категория) | Класс повторителя |
Макс. длина кабеля А [м] | Макс. длина кабеля В [м] | Макс. диаметр сети [м] |
5,4,3 (TX, FX) | 5,4,3 (TX, FX) | I или II | 100 | 100 | 200 |
5 (TX) | Оптоволокно | I | 100 | 160,8 | 260,8 |
3 или 4 (T4) | Оптоволокно | I | 100 | 131 | 231 |
Оптоволокно | Оптоволокно | I | 136 | 136 | 272 |
5 (TX) | Оптоволокно | II | 100 | 208,8 | 308,8 |
3 или 4 (T4) | Оптоволокно | II | 100 | 204 | 304 |
Оптоволокно | Оптоволокно | II | 160 | 160 | 320 |
При работе со скрученными парами (стандарт TX) используется 8-контактный разъем RJ-45 со следующим назначением контактов:
Номер контакта | Назначение сигнала |
Номер контакта | Назначение сигнала |
1 | Передача + | 5 | Не используется |
2 | Передача - | 6 | Прием - |
3 | Прием + | 7 | Не используется |
4 | Не используется | 8 | Не используется |
Если используются экранированные пары и 9-контактный разъем “d”-типа, то назначение контактов следующее:
Контакт 1 |
Прием + |
Контакт 5 | Передача + |
Контакт 6 | Прием - |
Контакт 9 | Передача - |
Для стандарта 100base-T4 назначение контактов приведено в таблице 4.1.1.2.4.
Таблица 4.1.1.2.4. Разъем MDI (media dependant interface) кабеля 100base-t4
Номер контакта | Назначение сигнала | Цвет провода |
1 | tx_d1 + (передача) | Белый/оранжевый |
2 | tx_d1 - | Оранжевый/белый |
3 | rx_d2 + (прием) | Белый/зеленый |
4 | bi_d3 + (двунаправленная) | Голубой/белый |
5 | bi_d3 - | Белый/голубой |
6 | rx_d2 - | Зеленый/белый |
7 | bi_d4 + | Белый/коричневый |
8 | bi_d4 - | Коричневый/белый |
Как видно из таблицы, одна пара предназначена для передачи (TX), одна для приема (RX) и две для двунаправленной передачи (BI). Знак полярности сигналов обозначен соответственно
+ и
-. Уровень логической единицы +3,5 В (CS1), нуля - 0 В (CS0), а -1 соответствует -3,5 В (CS-1). Стандарт 100base-T4 предполагает применение схемы кодирования 8B6T. Алгоритм 8B6T преобразует октет данных в 6-битовый тернарный символ, который называется кодовой группой 6Т. Эти кодовые группы передаются параллельно по трем скрученным парам сетевого кабеля, что позволяет осуществлять обмен лишь со скоростью 33,33Мбит/с. Скорость же передачи тернарных символов по каждой из пар проводов равна 6/8 от 33,33 Мбит/с, что эквивалентно 25 МГц. Шесть тернарных символов позволяют отобразить 36=729 различных кодов. Это позволяет отобрать для отображения 256 восьмибитовых кодов те тернарные символы, которые обеспечивают не менее 2 перепадов уровня сигнала. Схема подключения и передачи сигналов в сетях 100base-T4 показана на рис 4.1.1.2.3.
Пары 2 и 3 также как и в ТХ предназначены для приема и передачи данных. Пары 1 и 4 используются в двух направлениях, преобразуя канал между узлом и повторителем в полудуплексную.
В процессе передачи узел использует пары 1, 2 и 4, а повторитель - пары 1, 3 и 4. Следует заметить, что схема Т4, в отличие от ТХ, может работать только в полудуплексном режиме.
Рис. 4.1.1.2.3. Схема подключения и передачи сигналов в сетях 100base-T4 (буквы К с цифрами обозначают номера контактов разъема)
В сетях Fast Ethernet максимальное значение окна коллизий равно 5,12 мксек и называется временем канала (slot time). Это время в точности соответствует минимальной длине пакета в 64 байта. Для более короткого пакета коллизия может быть не зафиксирована. Окно коллизий представляет собой время от начала передачи первого бита кадра до потери возможности регистрации коллизии с любым узлом сегмента, это время равно удвоенной задержке распространения сигнала между узлами (RTT). Конфигурация сети Fast Ethernet, для которой значение окна коллизий превышает время канала, не верна. Время канала задает величину минимального размера кадра и максимальный диаметр сети. Для пояснения этих взаимозависимостей рассмотрим сеть, показанную на рис. 4.1.1.2.4.
Рис. 4.1.1.2.4
Задержка повторителя складывается из задержек физического уровня обоих портов и собственно задержки повторителя. Задержка на физическом уровне сетевого интерфейса считается равной 250 нсек. Рассмотрим задержки сигнала для всех пар узлов (a, b и c) изображенной на рисунке сети:
a ® b | 250+110+700+11+250 | = 1321 нсек |
a ® c | 250+110+700+495+250 | = 1805 нсек |
b ® c | 250+11+700+495+250 | = 1706 нсек |
Когда А передает кадр, узлы В и С отслеживают наличие несущей. Это продолжается до тех пор, пока А не завершит эту процедуру. Как только узлы В и С фиксируют окончание передачи кадра узлом А, они запускают свои таймеры IPG. Запускает свой таймер ipg и узел А, причем его таймер стартует первым. На рис. 4.1.1.2.5 показана временная диаграмма развития событий в сетевом сегменте. Таймер В стартует следующим через 1321 нсек после А. Таймер узла С стартует спустя 1805 нсек после А.
Рис. 4.1.1.2.5 Временная диаграмма, поясняющая возникновение коллизий (все времена в наносекундах)
Узел В начинает передачу сразу после срабатывания его IPG-таймера, а через 484 наносекунды передачу начнет и узел С, так как канал с его точки зрения свободен. Но коллизии еще не происходит, так как их кадры еще не “столкнулись”. Для того чтобы первый бит от узла В достиг узла С, требуется 1706 наносекунд. Узел С зарегистрирует столкновение первым, это произойдет в момент 3987нсек. После этого С будет продолжать передачу еще в течение 320 нсек (сигнал jam). Сигнал jam гарантирует регистрацию коллизии повторителем. Только спустя 484 нсек коллизию обнаружит узел В, начнет передачу своего сигнала jam после чего прекратит передачу. При этом предполагается, что jam не является контрольной суммой передаваемого пакета.
Стандарт IEEE предусматривает возможность полнодуплексной связи при использовании скрученных пар или оптоволокна. Реализуется это путем выделения для каждого из направлений передачи независимого канала. Такая схема осуществляет связь типа точка-точка и при определенных условиях позволяет удвоить пропускную способность сети. Здесь нет нужды в стандартном механизме доступа к сетевой среде, невозможны здесь и столкновения. Дуплексную схему могут поддерживать все три модификации 100-мегагерцного Ethernet (100base-TX, 100base-T4 и 100base-FX). Для оптоволоконной версии дуплексной связи предельная длина сегмента может достигать 2 км (для полудуплексного варианта предельная длина сегмента может достигать 412 м). Следует иметь в виду, что для локальных сетей целесообразнее применение мультимодового оптоволокна (дешевле и больше коэффициент захвата света, но больше удельное поглощение).
В настоящее время разрабатываются новые еще более скоростные варианты Ethernet
IEEE 802.3z. Гигабитный Ethernet утвержден в качестве стандарта в 1998 году;
1000base-FX; , смотри также . Эти сети ориентированы на применение 4-х скрученных пар категории 5 или выше (до 100м, разъем RJ-45) и оптоволоконных кабелей. Вместо манчестерского кода применяется кодировка 8В/10B. Эта нотация означает, что каждый байт кодируется при передаче десятью битами.
При этом не должно быть более 4 идентичных бит подряд и ни в одном коде не должно быть более 6 нулей или 6 единиц. Так достигаются хорошие условия синхронизации и высокая стабильность постоянной составляющей. В рассматриваемом варианте по каждой паре передаются сигналы с частотой 125МГц, и за каждый так транспортируется два бита. Сетевые интерфейсы используют шину PCI. В этом стандарте могут использоваться полнодуплексные повторители (
FRD). Эти повторители в отличии от традиционных имеют встроенные буферы на каждом из портов. Схема передачи предполагает карусельный способ доступа портов к шине повторителя. Но в этом приборе, в отличии от коммутатора, нет анализа адреса места назначения и пакет передается всем портам устройства. Блок-схема сетевого интерфейса GE и 10GE показана на рис. 4.1.1.2.6 (работа через скрученную пару). Поскольку в локальной сети могут присутствовать сегменты как FE, так и GE, возможны переполнения буферов в переключателях и потери кадров. Перекладывание подавления перегрузки на уровень L4 в данном случае особенно накладно. Для решения проблемы перегрузки одна из сторон посылает служебный кадр, сообщающий о том, что другая сторона на некоторое время должна прервать передачу. В поле тип такого кадра заносится код 0x8808, а первые два байта поля данных являются управляющими, послдующие октеты могут содержать параметры команды. Для управления используются кадры типа PAUSE, в качестве параметра может быть указано длительность паузы в единицах времни передачи кадра минимальной длины. Для GE такая единица равна 512 нсек. Максимальная длительность паузы равна 33,6 мсек. Хотя использование концентраторов не запрещено, оно крайне нежелательно, так как приводит к понижению эффективности использования сети.
Соединительные кабели для GE
Тип сути | Вид кабеля | Длина | Особенности |
1000Base-SX | Оптоволокно | 550м | Многомодовое |
1000Base-LX | Оптоволокно | 5000м | Одно- или многомодовое |
1000Base-СX | 2 экранир. пары | 25м | Экраниров. витая пара |
1000Base-Т | 4 неэкранир. пары | 100м | Витые пары 5-ой катег. |
<
br>
Новые Ethernet протоколы 1000BASE-T и 10GBASE- T требуют применения скрученных пар существенно более высокого качества (с большей полосой пропускания, с низкими уровнями NEXT и FEXT). Передача в этом случае производится по четырем скрученным парам одновременно. (Смотри .) Предполагается, что эта технология станет стандартной в первой половине 2006 года и станет частью спецификации IEEE 803.3ae. Требования к кабелю определяются документом ISO/IEC-11801:2002 для классов D или выше. Характеристики соответстующих кабелей смотри в разделе . Анализ распределения используемых длин показывает, наиболее часто используются кабели длиной 40м, а с вероятностью более 90% длина кабеля не правышает 80м. Кабели классов D-F имеют полосу пропускания 250-625 МГц.
Рис. 4.1.1.2.6. Блок схема сетевой карты для работы с GE и 10GE
Из рисунка видно, что цифровая обработка сигналов стала основой работы такого устройства. Для кабелей класса F (категория 7) максимальная длина составляет 100м, для класса Е (категория 6) от 55 до 100м, а для класса D (категория 5е) - 20-60м. При этом ожидается уровень BER не хуже 10-12. Скрученные пары предлагаются в качестве дешевого решения, при больших длинах оптическое волокно остается вне конкуренции. Ниже в таблице приводится сравнение режимов работы приемо-передатчиков в 1000BASE-T и 10GBASE-T.
1000BASE-T | 10GBASE-T |
5-уровневая амплитудно-импульсная модуляция (2 бита на символ) |
10-уровневая амплитудно-импульсная модуляция (3 бита на символ) |
4D код Треллиса на пару (8 состояний) |
4D код Треллиса на пару (8 состояний) |
Полный дуплекс с эхоподавлением при передаче |
Полный дуплекс с эхоподавлением при передаче |
125 Мбод, ~80MГц используемой полосы |
833 Мбод, ~450МГц используемой полосы |
Подавления FEXT нет | Необходимо подавление FEXT |
Содержание раздела